If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+40X=900
We move all terms to the left:
X^2+40X-(900)=0
a = 1; b = 40; c = -900;
Δ = b2-4ac
Δ = 402-4·1·(-900)
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{13}}{2*1}=\frac{-40-20\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{13}}{2*1}=\frac{-40+20\sqrt{13}}{2} $
| v+5=22 | | 14x-11=11x+14 | | 0.6x=1.1^x | | 18x-11=24-11x | | -5+3x=-41x+37 | | 8a-15=-3a | | 4x=7x+3x= | | -3x18=x+26 | | 40-x=9+2x | | 5y+y+y+2y=9y | | 6-2x+5=7 | | 235=5x3 | | 9a+80=15-6a | | 5+2(x-2)+5=7 | | 3.4*x=18 | | 5+2(x-2)+5=8 | | 3x-56=186 | | 9x-(2x-3)=38 | | 7t+12=3t | | x2-12x+60=0 | | 1+2x=x+-1 | | 1+2=x+1 | | 2x-6=-16-9x | | 4-2x=2-4 | | 100^2+20x+1=16 | | (2x−5)/7=9 | | 2×y-8=12 | | 3(6x+5)=x-3 | | 2y(6y+5=) | | 6y-19=6y-3 | | 4·3+18x÷9–12=x | | 10x×8=16x×6 |